
Adafruit PCA9685 16-Channel Servo
Driver

Created by Bill Earl

https://learn.adafruit.com/16-channel-pwm-servo-driver

Last updated on 2024-03-08 01:45:07 PM EST

©Adafruit Industries Page 1 of 29

5

6

7

8

11

13

16

18

18

Table of Contents

Overview

Pinouts
• Power Pins
• Control Pins
• Output Ports

Assembly
• Install the Servo Headers
• Solder all pins
• Add Headers for Control
• Install Power Terminals

Hooking it Up
• Connecting to the Arduino
• Power for the Servos
• Adding a Capacitor to the thru-hole capacitor slot
• Connecting a Servo
• Adding More Servos

Chaining Drivers
• Addressing the Boards

Using the Adafruit Library
• Install Adafruit PCA9685 library
• Test with the Example Code:
• Connect a Servo
• Calibrating your Servos
• Converting from Degrees to Pulse Length

Library Reference
• setPWMFreq(freq)
• Description
• setPWM(channel, on, off)
• Using as GPIO

Arduino Library Docs

Python & CircuitPython
• CircuitPython Microcontroller Wiring
• Python Computer Wiring
• CircuitPython Installation of PCA9685 and ServoKit Libraries
• Python Installation of PCA9685 and ServoKit Libraries
• CircuitPython & Python Usage
• Dimming LEDs
• Full Example Code
• Controlling Servos
• Standard Servos
• Continuous Rotation Servos
• Full Example Code

©Adafruit Industries Page 2 of 29

27

27

27

29

Python Docs

Python Docs: ServoKit

Downloads
• Files
• Schematic & Fabrication Print

FAQ

©Adafruit Industries Page 3 of 29

©Adafruit Industries Page 4 of 29

Overview

Driving servo motors with the Arduino Servo library is pretty easy, but each one
consumes a precious pin - not to mention some Arduino processing power. The
Adafruit 16-Channel 12-bit PWM/Servo Driver will drive up to 16 servos over I2C with
only 2 pins. The on-board PWM controller will drive all 16 channels simultaneously
with no additional Arduino processing overhead. What's more, you can chain up
to 62 of them to control up to 992 servos - all with the same 2 pins!

The Adafruit PWM/Servo Driver is the perfect solution for any project that requires a
lot of servos.

©Adafruit Industries Page 5 of 29

Pinouts

There are two sets of control input pins on either side. Both sides of the pins are
identical! Use whichever side you like, you can also easily chain by connecting up two
side-by-side

Power Pins
GND - This is the power and signal ground pin, must be connected
VCC - This is the logic power pin, connect this to the logic level you want to use
for the PCA9685 output, should be 3 - 5V max! It's also used for the 10K pullups
on SCL/SDA so unless you have your own pullups, have it match the
microcontroller's logic level too!
V+ - This is an optional power pin that will supply distributed power to the
servos. If you are not using for servos you can leave disconnected. It is not used
at all by the chip. You can also inject power from the 2-pin terminal block at the
top of the board. You should provide 5-6VDC if you are using servos. If you have
to, you can go higher to 12VDC, but if you mess up and connect VCC to V+ you
could damage your board!

Control Pins
SCL - I2C clock pin, connect to your microcontrollers I2C clock line. Can use 3V
or 5V logic, and has a weak pullup to VCC

•
•

•

•

©Adafruit Industries Page 6 of 29

SDA - I2C data pin, connect to your microcontrollers I2C data line. Can use 3V
or 5V logic, and has a weak pullup to VCC
OE - Output enable. Can be used to quickly disable all outputs. When this pin is
low all pins are enabled. When the pin is high the outputs are disabled. Pulled
low by default so it's an optional pin!

Output Ports
There are 16 output ports. Each port has 3 pins: V+, GND and the PWM output. Each
PWM runs completely independently but they must all have the same PWM frequency.
That is, for LEDs you probably want 1.0 KHz but servos need 60 Hz - so you cannot
use half for LEDs @ 1.0 KHz and half @ 60 Hz.

They're set up for servos but you can use them for LEDs! Max current per pin is
25mA.

There are 220 ohm resistors in series with all PWM Pins and the output logic is the
same as VCC so keep that in mind if using LEDs.

Assembly

Install the Servo Headers
Install 4 3x4 pin male headers into the
marked positions along the edge of the
board.

Solder all pins
There are a lot of them!

•

•

©Adafruit Industries Page 7 of 29

Add Headers for Control
A strip of male header is included. Where
you want to install headers and on what
side depends a little on use:
For breadboard (http://adafru.it/239) use,
install headers on the bottom of the board.
For use with jumper wires (http://adafru.it/
758), install the headers on top of the
board.
For use with our 6-pin cable (http://
adafru.it/206), install the headers on top of
the board.
If you are chaining multiple driver boards,
you will want headers on both ends.

Install Power Terminals
If you are chaining multiple driver boards,
you only need a power terminal on the first
one.

Hooking it Up
Connecting to the Arduino
The PWM/Servo Driver uses I2C so it take only 4 wires to connect to your Arduino:

"Classic" Arduino wiring:

+5v -> VCC (this is power for the BREAKOUT only, NOT the servo power!)
GND -> GND
Analog 4 -> SDA
Analog 5 -> SCL

Older Mega wiring:

+5v -> VCC (this is power for the BREAKOUT only, NOT the servo power!)
GND -> GND

•
•
•
•

•
•

©Adafruit Industries Page 8 of 29

Digital 20 -> SDA
Digital 21 -> SCL

R3 and later Arduino wiring (Uno, Mega & Leonardo):
(These boards have dedicated SDA & SCL pins on the header nearest the USB
connector)

+5v -> VCC (this is power for the BREAKOUT only, NOT the servo power!)
GND -> GND
SDA -> SDA
SCL -> SCL

Power for the Servos

Most servos are designed to run on about 5 or 6v. Keep in mind that a lot of servos
moving at the same time (particularly large powerful ones) will need a lot of current.
 Even micro servos will draw several hundred mA when moving. Some High-torque
servos will draw more than 1A each under load.

Good power choices are:

5v 2A switching power supply (http://adafru.it/276)
5v 10A switching power supply (http://adafru.it/658)

•
•

•
•
•
•

The VCC pin is just power for the chip itself. If you want to connect servos or
LEDs that use the V+ pins, you MUST connect the V+ pin as well. The V+ pin can
be as high as 6V even if VCC is 3.3V (the chip is 5V safe). We suggest
connecting power through the blue terminal block since it is polarity protected.

•
•

©Adafruit Industries Page 9 of 29

4xAA Battery Holder (http://adafru.it/830) - 6v with Alkaline cells. 4.8v with
NiMH rechargeable cells.
4.8 or 6v Rechargeable RC battery packs from a hobby store.

Adding a Capacitor to the thru-hole capacitor slot
We have a spot on the PCB for soldering in an electrolytic capacitor. Based on your
usage, you may or may not need a capacitor. If you are driving a lot of servos from a
power supply that dips a lot when the servos move, n * 100uF where n is the number
of servos is a good place to start - eg 470uF or more for 5 servos. Since its so
dependent on servo current draw, the torque on each motor, and what power supply,
there is no "one magic capacitor value" we can suggest which is why we don't include
a capacitor in the kit.

Connecting a Servo
Most servos come with a standard 3-pin female connector that will plug directly into
the headers on the Servo Driver. Be sure to align the plug with the ground wire
(usually black or brown) with the bottom row and the signal wire (usually yellow or
white) on the top.

•

•

It is not a good idea to use the Arduino 5v pin to power your servos. Electrical
noise and 'brownouts' from excess current draw can cause your Arduino to act
erratically, reset and/or overheat.

©Adafruit Industries Page 10 of 29

Adding More Servos
Up to 16 servos can be attached to one board. If you need to control more than 16
servos, additional boards can be chained as described on the next page.

Chaining Drivers
Multiple Drivers (up to 62) can be chained to control still more servos. With headers
at both ends of the board, the wiring is as simple as connecting a 6-pin parallel
cable (http://adafru.it/206) from one board to the next.

©Adafruit Industries Page 11 of 29

Addressing the Boards
Each board in the chain must be assigned a unique address. This is done with the
address jumpers on the upper right edge of the board. The I2C base address for
each board is 0x40. The binary address that you program with the address jumpers is
added to the base I2C address.

To program the address offset, use a drop of solder to bridge the corresponding
address jumper for each binary '1' in the address.

Board 0: Address = 0x40 Offset = binary 00000 (no jumpers required)
Board 1: Address = 0x41 Offset = binary 00001 (bridge A0 as in the photo above)

©Adafruit Industries Page 12 of 29

Board 2: Address = 0x42 Offset = binary 00010 (bridge A1)
Board 3: Address = 0x43 Offset = binary 00011 (bridge A0 & A1)
Board 4: Address = 0x44 Offset = binary 00100 (bridge A2)

etc.

In your sketch, you'll need to declare a separate pobject for each board. Call begin on
each object, and control each servo through the object it's attached to. For example:

#include <Wire.h>
#include <Adafruit_PWMServoDriver.h>

Adafruit_PWMServoDriver pwm1 = Adafruit_PWMServoDriver(0x40);
Adafruit_PWMServoDriver pwm2 = Adafruit_PWMServoDriver(0x41);

void setup() {
 Serial.begin(9600);
 Serial.println("16 channel PWM test!");

 pwm1.begin();
 pwm1.setPWMFreq(1600); // This is the maximum PWM frequency

 pwm2.begin();
 pwm2.setPWMFreq(1600); // This is the maximum PWM frequency
}

Using the Adafruit Library
Since the PWM Servo Driver is controlled over I2C, its super easy to use with any
microcontroller or microcomputer. In this demo we'll show using it with the Arduino
IDE but the C++ code can be ported easily

Install Adafruit PCA9685 library
To begin reading sensor data, you will need to install the Adafruit_PWMServo library
(code on our github repository) (https://adafru.it/aQl). It is available from the Arduino
library manager so we recommend using that.

From the IDE open up the library manager...

©Adafruit Industries Page 13 of 29

And type in adafruit pwm to locate the library. Click Install

We also have a great tutorial on Arduino library installation at:
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://
adafru.it/aYM)

Test with the Example Code:
First make sure all copies of the Arduino IDE are closed.

Next open the Arduino IDE and select File->Examples->Adafruit_PWMServoDriver-
>Servo. This will open the example file in an IDE window.

©Adafruit Industries Page 14 of 29

If using a Breakout:

Connect the driver board and servo as shown on the previous page. Don't forget to
provide power to both Vin (3-5V logic level) and V+ (5V servo power). Check the
green LED is lit!

If using a Shield:

Plug the shield into your Arduino. Don't forget you will also have to provide 5V to the
V+ terminal block. Both red and green LEDs must be lit.

If using a FeatherWing:

Plug the FeatherWing into your Feather. Don't forget you will also have to provide 5V
to the V+ terminal block. Check the green LED is lit!

Connect a Servo
A single servo should be plugged into the PWM #0 port, the first port. You should see
the servo sweep back and forth over approximately 180 degrees.

Calibrating your Servos

Servo pulse timing varies between different brands and models. Since it is an analog
control circuit, there is often some variation between samples of the same brand and
model. For precise position control, you will want to calibrate the minumum and
maximum pulse-widths in your code to match known positions of the servo.

Find the Minimum:
Using the example code, edit SERVOMIN until the low-point of the sweep reaches the
minimum range of travel. It is best to approach this gradually and stop before the
physical limit of travel is reached.

Find the Maximum:
Again using the example code, edit SERVOMAX until the high-point of the sweep
reaches the maximum range of travel. Again, is best to approach this gradually and
stop before the physical limit of travel is reached.

©Adafruit Industries Page 15 of 29

Converting from Degrees to Pulse Length
The Arduino "map()" function (https://adafru.it/aQm) is an easy way to convert
between degrees of rotation and your calibrated SERVOMIN and SERVOMAX pulse
lengths. Assuming a typical servo with 180 degrees of rotation; once you have
calibrated SERVOMIN to the 0-degree position and SERVOMAX to the 180 degree
position, you can convert any angle between 0 and 180 degrees to the corresponding
pulse length with the following line of code:

pulselength = map(degrees, 0, 180, SERVOMIN, SERVOMAX);

Library Reference

setPWMFreq(freq)
Description

This function can be used to adjust the PWM frequency, which determines how many
full 'pulses' per second are generated by the IC. Stated differently, the frequency
determines how 'long' each pulse is in duration from start to finish, taking into account
both the high and low segments of the pulse.

Frequency is important in PWM, since setting the frequency too high with a very small
duty cycle can cause problems, since the 'rise time' of the signal (the time it takes to
go from 0V to VCC) may be longer than the time the signal is active, and the PWM
output will appear smoothed out and may not even reach VCC, potentially causing a
number of problems.

Arguments

freq: A number representing the frequency in Hz, between 40 and 1600

Example

The following code will set the PWM frequency to 1000Hz:

Use caution when adjusting SERVOMIN and SERVOMAX. Hitting the physical
limits of travel can strip the gears and permanently damage your servo.

•

©Adafruit Industries Page 16 of 29

pwm.setPWMFreq(1000)

setPWM(channel, on, off)
Description

This function sets the start (on) and end (off) of the high segment of the PWM pulse on
a specific channel. You specify the 'tick' value between 0..4095 when the signal will
turn on, and when it will turn off. Channel indicates which of the 16 PWM outputs
should be updated with the new values.

Arguments

channel: The channel that should be updated with the new values (0..15)
on: The tick (between 0..4095) when the signal should transition from low to
high
off:the tick (between 0..4095) when the signal should transition from high to low

Example

The following example will cause channel 15 to start low, go high around 25% into the
pulse (tick 1024 out of 4096), transition back to low 75% into the pulse (tick 3072), and
remain low for the last 25% of the pulse:

pwm.setPWM(15, 1024, 3072)

Using as GPIO
There's also some special settings for turning the pins fully on or fully off

You can set the pin to be fully on with

pwm.setPWM(pin, 4096, 0);

You can set the pin to be fully off with

pwm.setPWM(pin, 0, 4096);

•
•

•

©Adafruit Industries Page 17 of 29

Arduino Library Docs
Arduino Library Docs (https://adafru.it/Au7)

Python & CircuitPython
It's easy to use the PCA9685 sensor with Python or CircuitPython and the Adafruit
CircuitPython PCA9685 (https://adafru.it/tZF) module. This module allows you to
easily write Python code that control servos and PWM with this breakout.

You can use this sensor with any CircuitPython microcontroller board or with a
computer that has GPIO and Python thanks to Adafruit_Blinka, our CircuitPython-for-
Python compatibility library (https://adafru.it/BSN).

CircuitPython Microcontroller Wiring
First wire up a PCA9685 to your board exactly as shown on the previous pages for
Arduino. Here's an example of wiring a Feather M0 to the sensor with I2C:

Board 3V to sensor VCC
Board GND to sensor GND
Board SCL to sensor SCL
Board SDA to sensor SDA

Python Computer Wiring
Since there's dozens of Linux computers/boards you can use we will show wiring for
Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to
see whether your platform is supported (https://adafru.it/BSN).

Here's the Raspberry Pi wired with I2C:

©Adafruit Industries Page 18 of 29

Pi 3V3 to sensor VCC
Pi GND to sensor GND
Pi SCL to sensor SCL
Pi SDA to sensor SDA

5V 2A (2000mA) switching power supply -
UL Listed
This is an FCC/CE certified and UL listed
power supply. Need a lot of 5V power?
This switching supply gives a clean
regulated 5V output at up to 2000mA. 110
or 240 input, so it works...
https://www.adafruit.com/product/276

5V 4A (4000mA) switching power supply -
UL Listed
Need a lot of 5V power? This switching
supply gives a clean regulated 5V output
at up to 4 Amps (4000mA). 110 or 240
input, so it works in any country. The
plugs are "US...
https://www.adafruit.com/product/1466

Don't try to power your servos from the RasPi or Linux board's 5V power, you can
easily cause a power supply brown-out and mess up your Pi! Use a separate 5v
2A or 4A adapter

©Adafruit Industries Page 19 of 29

CircuitPython Installation of PCA9685 and
ServoKit Libraries
You'll need to install the Adafruit CircuitPython PCA9685 (https://adafru.it/tZF) library
on your CircuitPython board.

First make sure you are running the latest version of Adafruit CircuitPython (https://
adafru.it/Amd) for your board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow
the steps to find and install these libraries from Adafruit's CircuitPython library
bundle (https://adafru.it/uap). Our CircuitPython starter guide has a great page on
how to install the library bundle (https://adafru.it/ABU).

For non-express boards like the Trinket M0 or Gemma M0, you'll need to manually
install the necessary libraries from the bundle:

adafruit_pca9685.mpy
adafruit_bus_device
adafruit_register
adafruit_motor
adafruit_servokit

Before continuing make sure your board's lib folder or root filesystem has the
adafruit_pca9685.mpy, adafruit_register, adafruit_servokit, adafruit_motor and
adafruit_bus_device files and folders copied over.

Next connect to the board's serial REPL (https://adafru.it/Awz) so you are at the
CircuitPython >>> prompt.

Python Installation of PCA9685 and
ServoKit Libraries
You'll need to install the Adafruit_Blinka library that provides the CircuitPython
support in Python. This may also require enabling I2C on your platform and verifying
you are running Python 3. Since each platform is a little different, and Linux changes
often, please visit the CircuitPython on Linux guide to get your computer
ready (https://adafru.it/BSN)!

•
•
•
•
•

©Adafruit Industries Page 20 of 29

Once that's done, from your command line run the following commands:

sudo pip3 install adafruit-circuitpython-pca9685

sudo pip3 install adafruit-circuitpython-servokit

If your default Python is version 3 you may need to run 'pip' instead. Just make sure
you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

CircuitPython & Python Usage
The following section will show how to control the PCA9685 from the board's Python
prompt / REPL. You'll learn how to interactively control servos and dim LEDs by typing
in the code below.

Dimming LEDs
Run the following code to import the necessary modules and initialize the I2C
connection with the sensor:

import board
import busio
import adafruit_pca9685
i2c = busio.I2C(board.SCL, board.SDA)
pca = adafruit_pca9685.PCA9685(i2c)

Each channel of the PCA9685 can be used to control the brightness of an LED. The
PCA9685 generates a high-speed PWM signal which turns the LED on and off very
quickly. If the LED is turned on longer than turned off it will appear brighter to your
eyes.

First wire a LED to the board as follows. Note you don't need to use a resistor to limit
current through the LED as the PCA9685 will limit the current to around 10mA:

•
•

©Adafruit Industries Page 21 of 29

LED cathode / shorter leg to PCA9685
channel GND / ground.
LED anode / longer leg to PCA9685
channel PWM.

The PCA9685 class provides control of the PWM frequency and each channel's duty
cycle. Check out the PCA9685 class documentation (https://adafru.it/C5n) for more
details.

For dimming LEDs you typically don't need to use a fast PWM signal frequency and
can set the board's PWM frequency to 60hz by setting the frequency attribute:

pca.frequency = 60

The PCA9685 supports 16 separate channels that share a frequency but can have
independent duty cycles. That way you could dim 16 LEDs separately!

The PCA9685 object has a channels attribute which has an object for each channel
that can control the duty cycle. To get the individual channel use the [] to index into
channels.

led_channel = pca.channels[0]

Now control the LED brightness by controlling the duty cycle of the channel
connected to the LED. The duty cycle value should be a 16-bit value, i.e. 0 to 0xffff,
which represents what percent of the time the signal is on vs. off. A value of 0xffff is
100% brightness, 0 is 0% brightness, and in-between values go from 0% to 100%
brightness.

For example set the LED completely on with a duty cycle of 0xffff:

led_channel.duty_cycle = 0xffff

After running the command above you should see the LED light up at full brightness!

Now turn the LED off with a duty cycle of 0:

©Adafruit Industries Page 22 of 29

led_channel.duty_cycle = 0

Try an in-between value like 1000:

led_channel.duty_cycle = 1000

You should see the LED dimly lit. Try experimenting with other duty cycle values to
see how the LED changes brightness!

For example make the LED glow on and off by setting duty_cycle in a loop:

Increase brightness:
for i in range(0xffff):
 led_channel.duty_cycle = i

Decrease brightness:
for i in range(0xffff, 0, -1):
 led_channel.duty_cycle = i

These for loops take a while because 16-bits is a lot of numbers. CTRL-C to stop the
loop from running and return to the REPL.

Full Example Code
SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

This simple test outputs a 50% duty cycle PWM single on the 0th channel. Connect
an LED and
resistor in series to the pin to visualize duty cycle changes and its impact on
brightness.

from board import SCL, SDA
import busio

Import the PCA9685 module.
from adafruit_pca9685 import PCA9685

Create the I2C bus interface.
i2c_bus = busio.I2C(SCL, SDA)

Create a simple PCA9685 class instance.
pca = PCA9685(i2c_bus)

Set the PWM frequency to 60hz.
pca.frequency = 60

Set the PWM duty cycle for channel zero to 50%. duty_cycle is 16 bits to match
other PWM objects
but the PCA9685 will only actually give 12 bits of resolution.
pca.channels[0].duty_cycle = 0x7FFF

©Adafruit Industries Page 23 of 29

Controlling Servos
We've written a handy CircuitPython library for the various PWM/Servo kits called
Adafruit CircuitPython ServoKit (https://adafru.it/Dpu) that handles all the complicated
setup for you. All you need to do is import the appropriate class from the library, and
then all the features of that class are available for use. We're going to show you how
to import the ServoKit class and use it to control servo motors with the Adafruit 16-
channel breakout.

If you aren't familiar with servos be sure to first read this intro to servos page (https://
adafru.it/scW) and this in-depth servo guide page (https://adafru.it/scS).

First connect the servo to channel 0 on the PCA9685. Here is an example of a servo
connected to channel 0:

Servo orange wire to breakout PWM on
channel 0
Servo red wire to breakout V+ on channel
0
Servo brown wire to breakout Gnd on
channel 0
Check your servo data sheet to verify how
to connect it!

Be sure you've turned on or plugged in the external 5V power supply to the PCA9685
board too!

First you'll need to import and initialize the ServoKit class. You must specify the
number of channels available on your board. The breakout has 16 channels, so when
you create the class object, you will specify 16 .

from adafruit_servokit import ServoKit
kit = ServoKit(channels=16)

Now you're ready to control both standard and continuous rotation servos.

©Adafruit Industries Page 24 of 29

Standard Servos
To control a standard servo, you need to specify the channel the servo is connected
to. You can then control movement by setting angle to the number of degrees.

For example to move the servo connected to channel 0 to 180 degrees:

pca.frequency = 50

Now that the PCA9685 is set up for servos lets make a Servo object so that we can
adjust the servo based on angle instead of duty_cycle.

By default the Servo class will use actuation range, minimum pulse-width, and
maximum pulse-width values that should work for most servos. However check the
Servo class documentation (https://adafru.it/BNE) for more details on extra parameters
to customize the signal generated for your servos.

import adafruit_motor.servo
servo = adafruit_motor.servo.Servo(servo_channel)

With Servo, you specify a position as an angle. The angle will always be between 0
and the actuation range given when Servo was created. The default is 180 degrees
but your servo might have a smaller sweep--change the total angle by specifying the
actuation_angle parameter in the Servo class initializer above.

Now set the angle to 180, one extreme of the range:

 kit.servo[0].angle = 180

To return the servo to 0 degrees:

kit.servo[0].angle = 0

With a standard servo, you specify the position as an angle. The angle will always be
between 0 and the actuation range. The default is 180 degrees but your servo may
have a smaller sweep. You can change the total angle by setting actuation_range .

For example, to set the actuation range to 160 degrees:

servokit.servo[0].actuation_range = 160

©Adafruit Industries Page 25 of 29

Often the range an individual servo recognises varies a bit from other servos. If the
servo didn't sweep the full expected range, then try adjusting the minimum and
maximum pulse widths using set_pulse_width_range(min_pulse, max_pulse) .

To set the pulse width range to a minimum of 1000 and a maximum of 2000:

kit.servo[0].set_pulse_width_range(1000, 2000)

That's all there is to controlling standard servos with the PCA9685 breakout, Python
and ServoKit !

Continuous Rotation Servos
To control a continuous rotation servo, you must specify the channel the servo is on.
Then you can control movement using throttle .

For example, to start the continuous rotation servo connected to channel 1 to full
throttle forwards:

kit.continuous_servo[1].throttle = 1

To start the continuous rotation servo connected to channel 1 to full reverse throttle:

kit.continuous_servo[1].throttle = -1

To set half throttle, use a decimal:

kit.continuous_servo[1].throttle = 0.5

And, to stop continuous rotation servo movement set throttle to 0 :

kit.continuous_servo[1].throttle = 0

That's all there is to controlling continuous rotation servos with the the PCA9685 16-
channel breakout, Python and ServoKit !

Full Example Code
SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

"""Simple test for a standard servo on channel 0 and a continuous rotation servo on

©Adafruit Industries Page 26 of 29

channel 1."""
import time
from adafruit_servokit import ServoKit

Set channels to the number of servo channels on your kit.
8 for FeatherWing, 16 for Shield/HAT/Bonnet.
kit = ServoKit(channels=8)

kit.servo[0].angle = 180
kit.continuous_servo[1].throttle = 1
time.sleep(1)
kit.continuous_servo[1].throttle = -1
time.sleep(1)
kit.servo[0].angle = 0
kit.continuous_servo[1].throttle = 0

Python Docs
Python Docs (https://adafru.it/C5p)

Python Docs: ServoKit
Python Docs: ServoKit (https://adafru.it/Dkx)

Downloads

Files
PCA9685 datasheet (https://adafru.it/okB)
Arduino driver library (https://adafru.it/aQl)
EagleCAD PCB files on GitHub (https://adafru.it/rME)
3D models on GitHub (https://adafru.it/19Bk)
Fritzing object in the Adafruit Fritzing library (https://adafru.it/aP3)

•
•
•
•
•

©Adafruit Industries Page 27 of 29

Schematic & Fabrication Print

Holes are 2.5mm diameter

©Adafruit Industries Page 28 of 29

FAQ
Can this board be used for LEDs or just servos?

It can be used for LEDs as well as any other PWM-able device!

I am having strange problems when combining this shield
with the Adafruit LED Matrix/7Seg Backpacks

The PCA9865 chip has an "All Call" address of 0x70. This is in addition to the
configured address. Set the backpacks to address 0x71 or anything other than the
default 0x70 to make the issue go away.

With LEDs, how come I cant get the LEDs to turn
completely off?

If you want to turn the LEDs totally off use (in Arduino) setPWM(pin, 0, 4096); not
setPWM(pin, 0, 4095);

©Adafruit Industries Page 29 of 29

